Solar Differential Rotation and Meridional Flow: the Role of a Subadiabatic Tachocline for the Taylor-proudman Balance
نویسنده
چکیده
We present a simple model for the solar differential rotation and meridional circulation based on a mean field parameterization of the Reynolds stresses that drive the differential rotation. We include the subadiabatic part of the tachocline and show that this, in conjunction with turbulent heat conductivity within the convection zone and overshoot region, provides the key physics to break the Taylor-Proudman constraint, which dictates differential rotation with contour lines parallel to the axis of rotation in case of an isentropic stratification. We show that differential rotation with contour lines inclined by 10 − 30 with respect to the axis of rotation is a robust result of the model, which does not depend on the details of the Reynolds stress and the assumed viscosity, as long as the Reynolds stress transports angular momentum toward the equator. The meridional flow is more sensitive with respect to the details of the assumed Reynolds stress, but a flow cell, equatorward at the base of the convection zone and poleward in the upper half of the convection zone, is the preferred flow pattern. Subject headings: Sun: interior — rotation — Sun: helioseismology
منابع مشابه
Dynamics of the solar tachocline – I. An incompressible study
Gough & McIntyre have suggested that the dynamics of the solar tachocline are dominated by the advection–diffusion balance between the differential rotation, a large-scale primordial field and baroclinicly driven meridional motions. This paper presents the first part of a study of the tachocline, in which a model of the rotation profile below the convection zone is constructed along the lines s...
متن کاملOn the Penetration of Meridional Circulation below the Solar Convection Zone II: Models with Convection Zone, the Taylor-Proudman constraint and Applications to Other Stars
The solar convection zone exhibits a strong level of differential rotation, whereby the rotation period of the polar regions is about 25-30% longer than the equatorial regions. The Coriolis force associated with these zonal flows perpetually “pumps” the convection zone fluid, and maintains a quasi-steady circulation, poleward near the surface. What is the influence of this meridional circulatio...
متن کاملThe effect of a meridional flow on Parker’s interface dynamo
Parker’s interface dynamo is generalized to the case when a homogeneous flow is present in the high-diffusivity (upper) layer in the lateral direction (i.e. perpendicular to the shear flow in the lower layer). This is probably a realistic first representation of the situation near the bottom of the solar convective zone, as the strongly subadiabatic stratification of the tachocline (lower layer...
متن کاملDynamics of the solar tachocline – II: the stratified case
We present a detailed numerical study of the Gough & McIntyre model for the solar tachocline. This model explains the uniformity of the rotation profile observed in the bulk of the radiative zone by the presence of a large-scale primordial magnetic field confined below the tachocline by flows originating from within the convection zone. We attribute the failure of previous numerical attempts at...
متن کاملA numerical MHD model for the solar tachocline with meridional flow
There are successful approaches to explain the formation of the tachocline by a poloidal magnetic field in the solar core. We present here the first MHD simulations of the solar tachocline which self-consistently include the meridional circulation. We show that the meridional flow significantly changes the shape and the characteristics of the tachocline. We find that after the inclusion of the ...
متن کامل